지금까지는 dplyr 패키지를 이용해서 데이터 프레임을 다루는 연습과 결측값, 이상값의 판별과 처리에 대한 부분을 연습했다. 이제는 데이터 분석에 앞서 또 하나 중요한 과정인 차원축소에 대한 부분을 다뤄보도록 하겠다. 차원축소 방법 중에 가장 기본적인 방법으로 주성분 분석(PCA)가 있다. 주성분 분석은 변수들의 선형 결합을 통해서 최대한 전체 정보를 설명할 수 있는 서로 독립적인 인공 변수로 변환하는 분석 방법이다. 예를 들어 기업의 신용평가를 위한 재무변수가 100개가 넘는데, 이러한 변수를 다 사용하면 오버피팅(overfitting)문제가 발생할 수 있다. 따라서 고차원에서 저차원으로 변환하는 방법이 필요하게 된다. 이론적인 내용에 대해서는 향후 다른 카테고리에 따로 정리할 예정이므로 여기서는 R로..